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Abstract Water isotope data from ice cores, particularly δ18O, have long been used in paleoclimatology.
Although δ18O has been primarily interpreted as a proxy for local air temperature, isotope-enabled
climate models have established that there are many nonlocal and nontemperature-related climatic
influences on isotopic signals at coring locations. Moreover, recent observational studies have linked ice
core isotopes to nonlocal patterns of climate variability, particularly to midlatitude atmospheric circulation
patterns and to variations in tropical climate. Therefore, paleoclimate reconstructions may better utilize
ice core isotope proxies by combining them with isotope-enabled climate models. Here we employ a
data assimilation-based technique that fuses isotopic proxy information with the dynamical constraints of
climate models. Through several idealized and real proxy experiments we assess the spatial and temporal
extent to which isotope records can reconstruct surface temperature, 500 hPa geopotential height, and
precipitation. We find local reconstruction skill to be most robust across the reconstructions, particularly
for temperature and geopotential height, as well as limited nonlocal skill in the tropics. These results are
in agreement with long-held views that isotopes in ice cores have clear value as local climate proxies,
particularly for temperature and atmospheric circulation. These results also show that in principle nonlocal
climate information may also be inferred from ice cores. However, the spatial range of this information
is nonuniform and depends on skillful modeling of the proxy data within the reconstruction process.

1. Introduction

Water isotope data from ice cores have long been used as a paleoclimate proxy, particularly the oxygen iso-
topic composition of precipitation deposited in layered ice core archives. δ18O, a measure of the ratio of the
oxygen isotopes oxygen-18 and oxygen-16, has been used primarily as a proxy for local temperature in the
mid to high-latitudes and for local precipitation in the tropics [e.g., Dansgaard, 1964; Jouzel et al., 1997]. In
the past few decades, isotope-enabled climate models have allowed for a richer understanding of the cli-
mate processes that produce the isotopic signals in precipitation [e.g., Risi et al., 2012]. Such modeling-based
studies complicate the simple temperature-isotope interpretation by identifying the many nonlocal influ-
ences on isotopic signals at ice coring locations. Recent observational studies have also linked ice cores to
nonlocal patterns of climate variability, particularly to midlatitude atmospheric circulation patterns and to
variations in tropical climate [e.g., Schneider and Noone, 2007; Schneider and Steig, 2008]. And although the
temperature-isotope relationship is well established for the study of past climate on long time scales (e.g.,
millennial time scales), on annual and decadal timescales nonlocal climate influences can become quite
important [Masson-Delmotte et al., 2008; Sturm et al., 2010]. The full spatial extent over which ice core isotope
records can robustly inform past climate on these shorter timescales has yet to be fully explored.

Here we explore the question: What can ice core isotopes tell us about annual and decadal climate? Specif-
ically, we identify the spatial range over which ice core isotope records can be used to robustly reconstruct
annual and decadal climate. To do this, we employ a data assimilation (DA)-based reconstruction tech-
nique that optimally combines proxy information with the dynamical constraints of climate models [Steiger
et al., 2014; Hakim et al., 2016]. Here we produce spatial field reconstructions using a combination of 38 ice
cores [Emile-Geay et al., 2015] and two different isotope-enabled climate models to simulate isotope ratios
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in precipitation. We include modeling of the firn compaction and water vapor diffusion process that affect the
isotope signal ultimately recorded in the ice cores [Herron and Langway, 1980; Johnsen et al., 2000; Dee et al.,
2015]. In contrast to this approach, most ice core-based reconstructions of past climate are based on convert-
ing single isotope records into temperature through an estimated linear relationship [e.g., Jouzel et al., 1997]
or are based on averaging a collection of records to arrive at a regional reconstruction [e.g., Steig et al., 2013].
This study is the first to model ice core isotopes explicitly in DA-based reconstructions using real proxy data.
Previous DA reconstructions that have incorporated ice core proxies have estimated the isotopes through a
linear-univariate fit with local temperature [e.g., Goosse et al., 2012; Hakim et al., 2016].

We perform a series of pseudoproxy and real proxy experiments to assess the spatial and temporal extent
to which ice core isotopes can be used to reconstruct past climate. Pseudoproxy experiments are synthetic,
controlled tests of a reconstruction technique that are performed within a climate model world (see Smerdon
[2012], for a review). Because the experiments are contained within this world, the answer is known per-
fectly, unlike the real historical climate. Real-world reconstructions include many uncontrolled and sometimes
unknown factors in both the proxy and observational climate data; these factors can make it unclear where
the deficiencies are in a reconstruction technique. Importantly, pseudoproxy experiments can be used to esti-
mate the upper bound on the reconstruction skill one could expect from a similar real proxy reconstruction.
Therefore, in this study we reconstruct the climate variables of surface temperature, geopotential height at
500 hPa, and precipitation in both pseudo and real proxy experiments, where the pseudoproxy experiments
provide this upper bound estimate while the real proxy experiments assess what is currently knowable in a
real, state-of-the-art reconstruction. After presenting the results of both sets of experiments and assessing
them at annual to decadal timescales, we discuss the reasons for the fundamental differences between recon-
struction skill of different variables and the key results of the pseudoproxy and real proxy reconstructions.
These experimental results will be particularly useful for guiding interpretations of ice core isotope-based
reconstructions over the past two millennia.

2. Pseudoproxy Experiments
2.1. Experimental Framework
We employ a data assimilation technique that optimally combines observations (in this context, proxy data)
with climate model states. The model provides an initial, or prior, state estimate that one can update in a
Bayesian sense based on the observations and an estimate of the errors in both the observations and the
prior. The prior may contain any climate model variables of interest. The updated prior, called the posterior, is
the best estimate of the climate state given the observations and the error estimates. The basic state update
equations of DA [e.g., Kalnay, 2003, chapter 5] are given by

xa = xb + K[y −(xb)] , (1)

where K can be written as

K = cov(xb,(xb))[cov((xb),(xb)) + R]−1 , (2)

and cov() represents a covariance expectation. xb is the prior (or “background”) estimate of the state vector
and xa is the posterior (or “analysis”) state vector. Observations (or proxies) are contained in vector y. The
observations are estimated by the prior through (xb), which is, in general, a nonlinear vector-valued obser-
vation operator that maps xb from the state space to the observation space; in the present work (xb) is the
estimate of ice core isotopes at the ice core locations based on output from the climate model. Matrix K, the
Kalman gain, weights y −(xb) and transforms it into state space. Matrix R is the error covariance matrix for
the observations. The DA update process involves iteratively computing equation (1) to arrive at the posterior,
xa, for each year of the reconstruction. In any given year of the reconstruction xa is the probability distribution
of states that are consistent with the proxy observations and errors, as well as the prior distribution; therefore,
it is the full probability distribution of xa that represents the probabilistic reconstruction of the climate state.
In the figures we show the mean of xa, with uncertainty estimates derived from the posterior distribution.
Additionally, we present a variety of performance measures of the climate reconstructions, including one that
takes account of the full posterior distribution for both the time series and the space-time reconstructions
(see the discussion of the “continuous ranked probability skill score” in section 2.2). For more mathematical
details of the reconstruction methodology and the precise calculation procedure, see the Appendix of Steiger
et al. [2014].
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In all of the experiments shown here (both pseudo and real reconstructions) we use a “no-cycling” or “off-line”
DA approach, where the prior ensembles are drawn from existing climate model simulations. Here the ensem-
ble members are individual years instead of independent model simulations, as employed in “cycling” or
“online” data assimilation. Because of how the prior ensemble is constructed, it will not contain year-specific
forcings or boundary conditions nor does the method propagate information forward in time. This off-line
approach has large computational benefits over an online approach where one must integrate an ensemble
of climate model simulations forward in time after each DA update step. Indeed, for the paleoclimate recon-
struction problem, it is almost always impractical to cycle an ensemble of tens to hundreds of Coupled Model
Intercomparison Project Phase 5-class climate model simulations (as used here) for a paleoclimate reconstruc-
tion. Moreover, in the off-line case, one may use hundreds to thousands of ensemble members from multiple
models and high-resolution simulations, reducing the potential for model bias and sampling error. It is also
appropriate to use an off-line approach when the predictability time limit of the model is shorter than the
time scale of the observations: for example, if observations are only available at annual resolution yet the
model cannot skillfully forecast the climate state a year into the future, then no useful information is gained by
cycling the model. Matsikaris et al. [2015] recently compared online and off-line approaches to paleoclimate
DA with a fully coupled earth system model and found no improvement with the online method, suggesting
that the model was unable to provide useful atmospheric information at analysis times. However, an online DA
approach may be advantageous for ocean-focused DA, given the longer climatic timescales involved [Goosse,
2016; Steiger and Hakim, 2016].

The climate model simulations employed in these experiments for the prior, xb, are the isotope-enabled atmo-
spheric models ECHAM5-wiso [Werner et al., 2011] and iCAM5 (described in J. Nusbaumer et al., submitted
manuscript, 2016). We ran ECHAM5-wiso at the spectral truncation T106 (∼1∘ resolution) using monthly his-
torical sea ice and sea surface temperatures from the Hadley Centre sea ice and sea surface temperature (SST)
data set (HadISST) [Rayner et al., 2003] as boundary conditions for the years 1871 through 2011. We also use
a simulation of iCAM5 that was run at ∼2∘ resolution and was also forced with monthly historical sea surface
temperatures for the years 1850–2014, from a merged data set of the HadISST and version 2 of the National
Oceanic and Atmospheric Administration optimum interpolation SST analysis data products [Hurrell et al.,
2008] (though only the years of overlap with the ECHAM5-wiso simulation were used). Both model simula-
tions assume that the oxygen isotope ratios of ocean water are constant in time but vary in space according
to the annual mean observation-based product of LeGrande and Schmidt [2006]. In section A1, we evaluate
specific features of both simulations that are relevant to our reconstruction experiments.

These models provide the annual states for our prior ensembles as well as the climate and isotopic fields
for the pseudoproxies (see below). We reconstruct 2 m air temperature, geopotential height at 500 hPa, and
precipitation, all at the native model resolutions. The pseudoproxy reconstructions were performed over the
years 1871–2011 of the simulations by reconstructing the annual climate states a decade at a time while
using the remaining annual states for the prior ensemble (e.g., the years 1880–1889 were reconstructed using
the years 1871–1879 and 1890–2011 as the prior ensemble). Each year here is a calendar year, January to
December; we also tested the seasonality of the prior averaging by alternatively defining a year as April to the
next March, and we found very similar results (not shown) and therefore retained the usual annual definition.
Though we note that for particular locations, such as for the Andes, the calendar year may not fully account
for the local hydrological year and may limit reconstructions of seasonal El Niño–Southern Oscillation (ENSO)
dynamics [Hardy et al., 2003; Vimeux et al., 2009; Hurley et al., 2016]. Each reconstruction was repeated 100
times in a Monte Carlo fashion by random sampling 75% of the pseudoproxy network for each reconstruction
iteration. Each of these iterations comes with a posterior ensemble, and uncertainty estimates are derived
from the spread in all the posterior ensembles of the Monte Carlo iterations. We note that because our
ensemble size is rather large, with 129, 130, or 131 members depending on the particular segment of the
reconstruction, we did not employ covariance localization, which is a common (though ad hoc) method of
reducing the effects of sampling error in small ensembles.

Pseudoproxy experiments, usually designed to test different methodological approaches to climate recon-
struction, generally employ relatively simple pseudoproxies [Smerdon, 2012]. These are constructed by first
choosing a climate model to provide the climate fields; then a realistic pseudoproxy network is chosen that
mimics real-world spatial proxy availability. Using this network, temperature time series are drawn from the
model and realistic amounts of noise (usually white noise) are added to create the pseudoproxies. In con-
trast to this approach, here we employ proxy system models (PSMs)—also called process models, observation
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Figure 1. Pseudo and real proxy networks used in this study, with the number of proxy sites indicated for each network.
Note that some site locations are shown here with approximate coordinates following what is entered in the proxy
databases and also note that many proxy sites are very near one another or are colocated.

models, or forward models—to create our pseudoproxies (see Evans et al. [2013], for a review of PSMs). PSMs
are physically based models that transform the simulated climate signal (e.g., temperature and precipitation)
to a synthetic proxy time series. Here the pseudoproxy ice cores were modeled using the water isotope fields
of ECHAM5-wiso/iCAM5 together with the PSM discussed in Dee et al. [2015]. Besides including water isotopes,
ECHAM5-wiso and iCAM5 account for sublimation, melting, and wind erosion of snow on the land surface.
The pseudoproxy network for these experiments is the “NCDC” network shown in Figure 1, which is a network
based on all the locations of ice core proxies in the National Climatic Data Center database (not necessarily
just measurements of δ18O); this large ice core network was chosen as a best case network coverage scenario.

The ice core PSM includes three submodels, each of which mimics a separate modification of the original input
signal as it would occur in nature: a sensor model, which describes the physical and geochemical processes
that respond to the climate signal, an archive model, which accounts for any processes that affect the encod-
ing of the signal in the proxy medium, and an observation model, which involves proxy measurements and
accounts for dating uncertainties and analytical errors in the final measurement made on the ice core data.
Following Dee et al. [2015], the sensor model calculates precipitation-weighted δ18Op and corrects for temper-
ature and altitude bias of the modeled output; the archive model estimates compaction and diffusion down
core by convolving the original isotope signal with a Gaussian kernel characterized by a diffusion length 𝜎

(see Johnsen et al. [2000], Küttel et al. [2012], and Dee et al. [2015], for mathematical details), and the obser-
vation model accounts for analytical uncertainty by sampling an age model. We note that for simplicity, and
because we are interested in estimating an upper limit on reconstruction skill, in this study we do not account
for age uncertainties, which would generally act to degrade the skill of the reconstructed variables. While the
combination of the climate model output and the PSM produce single isotopic values for a given year (like
real ice cores), this value represents the many short-time scale processes included in the simulations, such as
daily weather events and seasonal snow melt or sublimation. In the data assimilation process, the prior esti-
mates of the observations,(xb), are the PSM-derived pseudoproxies for the years of the prior ensemble; this
is a “perfect model” framework that would be equivalent in a real reconstruction to knowing precisely the
physical processes that led to the formation of all the ice cores.

As a test of the robustness of the pseudoproxy results, we adjust the diffusion length, 𝜎, in the ice core PSM.
Diffusion in the firn can blur well-defined layering of isotope ratios, potentially limiting the ability to recon-
struct annual climate variables [Johnsen, 1977; Cuffey and Steig, 1998; Johnsen et al., 2000; Küttel et al., 2012].
The extent to which diffusion affects an ice core isotope record is principally a function of site temperature
and snow accumulation rate. We estimate the uncertainty associated with diffusion by directly setting 𝜎 in
two end-member experiments and comparing the results with an unmodified control 𝜎. For the low-diffusion
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Figure 2. (a and c) Greenland mean temperature pseudoproxy reconstruction. Skill metrics are indicated on the lower
left as correlation (r), coefficient of efficiency (CE), and both of these again after the true and reconstructed time series
have been detrended (indicated by “d”); additionally the mean continuous ranked probability skill score (CRPSS)
assesses both the reconstruction mean and uncertainty relative to the uninformed prior baseline. The uncertainty
estimates are based on the spread in all the posteriors of the Monte Carlo iterations. (b and d) Coherence of the
reconstruction mean with the true times series, along with a 95% confidence level.

experiment we set 𝜎 to one half its control value and for the high-diffusion experiment we set 𝜎 to 2 times its
control value. The control values of 𝜎 are obtained following Johnsen et al. [2000], using a snow density pro-
file calculated with a Herron-Langway densification model [Herron and Langway, 1980]. The Herron-Langway
model uses inputs of temperature and snow accumulation that are taken from the climate model simulations
and bias corrected to elevation. The sensitivity of the reconstruction results to modifying the diffusion length
are shown in section A2.

2.2. Reconstruction Results
Let us first consider the local temperature reconstruction skill for the pseudoproxy experiments, focusing on
Greenland. Figures 2a and 2c show the reconstructed Greenland mean temperature and the “true” Green-
land mean temperature (from both general circulation model (GCM) simulations), with uncertainty estimates
based on both the posterior ensembles and the Monte Carlo iterations. Skill for the reconstruction mean is
shown at the bottom of the figure panels: correlation (r), coefficient of efficiency (CE) [Nash and Sutcliffe, 1970],
and again both of these after the true and reconstructed time series have been detrended. Additionally, the
figures indicate the mean continuous ranked probability skill score (CRPSS) of the posterior distributions of
the reconstructions; this skill score is based on the continuous ranked probability score (CRPS), which is a
“strictly proper” scoring rule that accounts for the skill of the entire posterior reconstruction distribution (see
Gneiting and Raftery [2007], for details). The skill score version, CRPSS, is the reconstructed CRPS computed
with respect to the CRPS of a reference distribution, CRPSS = 1 − CRPSrec∕CRPSref, which for this paper is
the initial, uninformed prior; positive CRPSS indicates that the reconstructed distribution is more skillful for
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Figure 3. (a and c) British Isles mean temperature pseudoproxy reconstruction (cf. Figure 2). (b and d) Coherence of the
reconstruction mean with the true times series.

this metric than the uninformed prior. CRPSS is calculated for each year of the reconstruction, and the “mean”
CRPSS shown in all the figures indicates the time mean of the CRPSS values. We note that the implementation
of CRPS used here (and elsewhere [Barboza et al., 2014; Werner and Tingley, 2015]) does not account for errors
in the verification data sets; this assumption is not an issue for the pseudoproxy results because the truth is
known exactly, but for the real proxy results it should be kept in mind that there can be large uncertainties
in some historical observation-based products. Figures 2b and 2d shows the cross-spectral coherence of the
mean reconstructions with the true time series (computed using a multitaper method). Coherence is similar to
correlation as a function of frequency, and in this figure it shows relatively constant or improved coherence at
lower frequency or longer time scales. We note that the coherence is here computed without first detrending
the time series since we are partly interested in how well the trends are reconstructed; therefore, depend-
ing on the particular time series, there can be some fragility of the coherence skill at longer than decadal
time scales.

The North Atlantic Oscillation (NAO) is an atmospheric circulation pattern that extends over both Greenland
and Europe and is the dominant teleconnection pattern in the North Atlantic-European region [Hurrell et al.,
2013]. It is therefore reasonable to expect that Greenland ice cores may contain important information
about European climate. Furthermore, it has been argued that particular accumulation and δ18O records
in Greenland correlate with the NAO [Appenzeller et al., 1998; Rogers et al., 1998] and Greenland ice core
δ18O records have even been used to reconstruct the NAO [Vinther et al., 2003]; though we note that dif-
ferent NAO reconstructions based on multiple proxies have found very different results from one another
[e.g., Schmutz et al., 2000; Trouet et al., 2009]. As a convenient point of comparison with the Greenland mean
reconstructions shown in Figure 2, we additionally reconstruct the British Isles (Britain and Ireland) mean tem-
perature (Figure 3). Unlike the Greenland mean temperature reconstructions in Figure 2, this regional mean
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Figure 4. (a and c) Global mean temperature pseudoproxy reconstruction (cf. Figure 2). (b and d) Coherence of the
reconstruction mean with the true times series.

reconstruction shows essentially no skill, even at longer timescales, (Figures 3b and 3d); later in this section
we explore the reason for this result.

Because we are interested in exploring the full spatial extent to which ice core isotopes can inform past cli-
mate, we also reconstruct the global mean temperature (Figure 4); though we do not have a strong a priori
reason for expecting that ice core isotope records in polar regions will skillfully reconstruct the annual mean
global temperature. We note that the drop in skill for Figures 4a and 4c during the last decade for both models
is likely a result of the experimental construction where the prior for that segment (years 1841–2000) is not
sufficiently representative of the last decade’s warmth. This situation is somewhat unique to this particular
reconstruction scenario: for reconstructions over the last two millennia, the global climate changes are small
relative to those driven by postindustrial global warming and using a range of last millennium simulations for
the prior will very likely provide a sufficiently representative prior [e.g., Otto-Bliesner et al., 2016]. By comparing
the regular skill scores with the skill of the detrended reconstruction, we can see that much of the annual r and
CE skill comes from the trend. Also, the positive mean CRPSS over the entire time frame indicates a probabilis-
tic reconstruction that is better (for this metric) than an uninformed prior. Also, the spectral coherence is near
or below the 95% confidence level at most frequencies, and if the time series are first detrended before com-
puting the coherence, we do not see the large decadal-scale coherence increase at the low-frequency ends of
Figures 4b and 4d. We therefore conclude that while ice core isotopes can potentially be used to reconstruct
a centennial global mean trend, in principle they do not provide enough high signal-to-noise information to
reconstruct global mean temperature on annual and decadal time scales.

Next, we consider the spatial skill of the pseudoproxy reconstructions for temperature, geopotential height
at 500 hPa (Z500), and total precipitation. Figure 5 shows the skill of the 2 m air temperature reconstruc-
tions, for both GCMs. Each of the spatial skill metrics are computed either with the posterior mean (r and CE)
or the full posterior distribution (CRPSS) of the grid point temperature series over the entire reconstruction
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Figure 5. Spatial 2 m air temperature pseudoproxy reconstruction skill with (top row) correlation (r), (middle row) coefficient of efficiency (CE), and (bottom row)
continuous ranked probability skill score (CRPSS); both CE and CRPSS are only shown down to −1. All skill metrics are computed for the length of the
reconstruction, 1871–2011, and after detrending all of the reconstructed and true spatial time series. (left column) Reconstruction skill for ECHAM5-wiso;
(right column) skill for iCAM5. For the correlation plots, stippling indicates correlations with p values greater than 0.05. The locations of the pseudo ice cores are
indicated by the open squares.

after detrending the underlying grid point time series (removing the linear trend). Similar to the regional
mean temperature reconstructions in Figures 2 and 3, there is clear skill near the pseudo ice cores, espe-
cially in Greenland and Antarctica, but not consistently in other locations. The possible exceptions to this
include the Southern Ocean and the central Pacific. If r and CE are computed at 10 year averages (not
shown), the ice cores tend not to add any new areas of high skill but simply amplify skill in a given location.
Corresponding annual spatial results for Z500 shown in Figure 6 have similar features, with highest skill near-
est the proxies. The pattern of positive skill across the tropics in both T2m and Z500 may directly reflect
an ENSO teleconnection: the Rossby wave train-like pattern emanating poleward from the central Pacific in
Figure 6 (most noticeable in iCAM) is very similar to the known tropospheric response to ENSO variability
[e.g., Trenberth et al., 1998]. Such a pattern has been linked to Andean ice core δ18O [Vuille et al., 2003].
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Figure 6. Geopotential height at 500 hPa (Z500) pseudoproxy reconstruction skill (cf. Figure 5).

Figure 7 shows the spatial skill for precipitation. Unlike temperature and Z500, for precipitation the skill is
either nonexistent or localized to sites of high annual snow accumulation where the isotopic signal is less dif-
fused, such as coastal and West Antarctica. However, as an exception, there is apparently skill for precipitation
in the central Pacific and over the Amazon basin where T2m and Z500 skill are also good; this likely reflects
the influence of ENSO on ice cores in the polar regions [Schneider and Steig, 2008; Steig et al., 2013] and the
Andes [Hoffmann et al., 2003; Samuels-Crow et al., 2014].

The fundamental differences between the precipitation results and both temperature and Z500 can be
explained by the fact that the covariance length scales for precipitation are much reduced compared to
those for temperature and Z500. Figure 8 shows the correlation as a function of distance between the
PSM-derived pseudo ice cores and the reconstructed variables. (Note that the correlation of two time series is
simply the covariance normalized by the product of the standard deviations of the two time series.) Recalling
equation (2), we note that larger covariance values between the prior and the prior-estimated observations
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Figure 7. Precipitation pseudoproxy reconstruction skill (cf. Figure 5).

end up weighting the innovation more heavily; thus, larger covariances allow the information in the observa-
tions (or proxies) to be spread more widely. Evidently, an ice core isotope record at one location has very little
to say about precipitation on an annual time scale at other spatial locations. We note that snow accumulation
could be a better proxy of precipitation than isotopes, though reconstructions using accumulation would still
be affected by the reduced correlation length scale of precipitation.

Because the amount of diffusion within the firn has the potential to impact the isotopic signal within our
modeled ice cores, we also performed two end-member diffusion experiments and compare these with the
control or normal diffusion experiments in section A2; in summary, we do not find that diffusion uncertainty
in the ice core PSM affects the spatial reconstruction skill results.

We also performed a set of experiments to determine if the skill in the central Pacific is dependent on any par-
ticular regional group of pseudo ice cores. In each reconstruction experiment we removed a different regional
network, viz., Greenland, West Antarctica, and the Andes, and compared the spatial skill of temperature and
Z500 in the tropics (not shown). We found that no single location was responsible for the tropical skill: removal
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Figure 8. Correlation as a function of distance between the PSM-derived pseudo ice cores and the spatial reconstructed
variables. For each pseudo ice core, detrended correlations are computed for each grid point time series of the spatial
fields, then these correlations are binned by distance, and finally averaged over all pseudo ice cores.

of the Andes, West Antarctic, or Greenland proxies did not lead to clear reductions in tropical skill (though
local to the removed regional network there was significant loss of skill, with much of the lost skill for the
Andes happening over the Amazon basin). This result suggests that many of the pseudo ice cores in this net-
work contain some amount of useful, nonlocal information that they can contribute in the absence of other
ice cores.

One outstanding question related to these experiments is whether or not the primarily local skill is driven
by climate statistics at ice core sites or by the ice cores themselves: in the process of formation, do ice
cores degrade much of their initial information about nonlocal climate? Or would perfect instrumental
observations of climate at the ice core locations be able to reconstruct more nonlocal climate? To test this
question in the pseudoproxy framework, we generated temperature-only pseudoproxies at the ice core loca-
tions with a signal-to-noise ratio of 5 (typical annual proxies have a local signal-to-noise ratio of about 0.3
[Wang et al., 2014]), which would be characteristic of thermometer measurements, and then we performed

Figure 9. (a) Global mean temperature reconstruction based on purely temperature pseudoproxies at all ice core
locations. Skill metrics are indicated on the lower left as correlation (r), coefficient of efficiency (CE), and both of these
again after the true and reconstructed time series have been detrended (indicated by “d”); additionally, the continuous
ranked probability skill score (CRPSS) assesses both the mean and uncertainty relative to the uninformed prior baseline.
(b) Coherence of the reconstruction mean with the true times series, along with a 95% confidence level.
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Figure 10. Reconstruction skill for each climate variable (left to right columns) based on purely temperature pseudoproxies at all ice core locations. The skill
metrics are (top row) correlation (r), (middle row) coefficient of efficiency (CE), and (bottom row) continuous ranked probability skill score (CRPSS); both CE and
CRPSS are only shown down to −1. The skill metrics are computed after detrending the underlying true and reconstruction data. For the correlation plots,
stippling indicates correlations with p values greater than 0.05. The locations of the temperature pseudoproxies are indicated by the open squares.

reconstructions with ECHAM5-wiso leaving the rest of the reconstruction process the same. Figure 9 shows the
global mean temperature reconstruction (analogous to Figure 4), and Figure 10 shows the spatial skill of the
reconstructions for temperature, Z500, and precipitation. These two figures show that given sufficiently accu-
rate observations (or sufficiently many noisy observations in the same locations), one could reconstruct global
mean temperature and even consistent tropical climate and local precipitation with high skill. This implies
that processes inherent to the proxy system itself blur the desired climate signal for such reconstructions.
Interestingly, these results also show that even direct temperature observations in Greenland provide insuf-
ficient information to skillfully reconstruct European climate on annual timescales (near zero or negative CE
and CRPSS over nearly all of Europe, Figure 10).

3. Real Proxy Experiments
3.1. Experimental Framework
For the real reconstructions (reconstructions using real ice core isotope data) we employ a similar framework
as that in the pseudoproxy reconstructions, with the following differences. We used 38 annual ice core δ18O
proxies from the latest version of the PAGES2k database [Emile-Geay et al., 2015], with the locations indicated
by “PAGES2k v2” in Figure 1 and their temporal availability shown in Figure 11. Because the proxy data is
composed of only ice cores, we did not standardize the raw isotopic measurements at any point in the recon-
structions, though the time mean was removed from both the proxies and the model estimate of the proxies,
(xb). We estimated analytical errors in the isotope measurements as 0.1/‰. As part of the Monte Carlo
reconstruction process, we performed six different types of reconstructions over the period 1900–2000; each
of the experiments paired a climate model simulation, ECHAM5-wiso or iCAM5, with one of three choices
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Figure 11. Ice core data values available in the PAGES2k-V2 data set for each year of the reconstruction. Thirty-eight ice
cores are used in the reconstruction, but any given year may contain missing data or may not cover the entire
1900–2000 year reconstruction interval.

of diffusion in the PSM: normal, half diffusion, and no diffusion. We did not use more than normal diffusion
because the proxy system model tends to be too diffusive for many low-accumulation locations [Dee et al.,
2015]. We repeated the reconstructions 100 times with all six combination pairs of GCM and PSM, sampling
75% of the proxy network for each iteration. These 600 individual reconstructions, each with an ensemble
of size 140 (140 annual states drawn from the historical simulations), were then pooled together to create
a “grand” posterior ensemble; this is similar to the pseudoproxy experiments except that all the reconstruc-
tion variations are pooled together into this grand posterior ensemble. The figures use both the mean of
this ensemble and error estimates based on the grand ensemble spread. Note that the reconstructions over-
lap in time with the ECHAM5-wiso and iCAM5 simulations that were run from 1871 to 2011 using historical
SST boundary conditions. However, in the off-line reconstruction process the only time axis information that
the prior ensembles are aware of come from the proxies (unlike some other DA-based reconstructions that
are additionally given year-specific forcing information [e.g., Matsikaris et al., 2015]). Ideally, one would use
simulations for the prior that did not have temporal overlap with the reconstruction, though these were the
only extant simulations available that meet the criteria of being isotope enabled, high resolution, and at least
centennial in length.

3.2. Reconstruction Results
Analogous to the pseudoproxy results, Figure 12 shows the mean temperature reconstructions for Greenland,
the British Isles, and the globe, with Berkeley Earth [Rohde et al., 2013] as verification; we chose Berkeley Earth
for temperature verification because of its high spatial resolution and more extensive spatial coverage, par-
ticularly in the Arctic, as compared to HadCRUT4.3, for instance (though the skill results are not sensitive to
the choice of instrumental verification data where they overlap spatially). We note that neither product can
be considered reliable in the Antarctic due to the lack of instrumental data during the reconstruction period
[Nicolas and Bromwich, 2014], and thus, we have chosen to focus on the reconstruction over Greenland. The
results in Figure 12 share several features with the pseudoproxy experiments, yet also differ in important ways,
such as the overall reduced levels of skill. However, in the 5–10 year coherence band two real proxy reconstruc-
tions reach similar levels as the upper bound pseudoproxy estimates, cf. the Greenland mean temperature in
Figure 2b with Figure 12b and the global mean temperature in Figures 4b and 4d with Figure 12f. Similar to
the pseudoproxy experiments, Greenland mean temperature is reconstructed better than for the British Isles
or for the global mean at both annual and longer timescales.

Figure 13 (left column) shows the annual, detrended spatial skill of the temperature reconstructions as veri-
fied against Berkeley Earth (infilled with RegEM iridge [Schneider, 2001]). Like the pseudoproxy reconstruction
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Figure 12. Temperature reconstructions using real ice core δ18O proxy data and coherence of the reconstruction mean
with the Berkeley Earth time series (BEarth). (a and b) Greenland mean temperature reconstruction, (c and d) British Isles
mean temperature reconstruction, and (e and f) global mean temperature reconstruction.

results shown in Figure 5, the local skill over Greenland is high. The CE skill is not correspondingly high in
Antarctica, and we note that this result is confounded by the fact that instrumental observations are rare in
Antarctica prior to the late 1950s, whereas over Greenland such data extend back into the 1800s. This means
that we have fewer and less-reliable data in Antarctica with which to validate the PSMs and to verify the
reconstructions. As in the pseudoproxy experiments, there is a small amount of skill in the tropical Pacific.
Figure 13 (middle and right columns) show the detrended spatial skill for Z500 and precipitation as verified
against the European Centre For Medium-Range Weather Forecasts reanalysis product ERA-20C, which has
data available starting in the year 1900 [Poli et al., 2013]. The spatial skill for Z500 shares similar patterns with
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Figure 13. Spatial reconstruction using real proxies and PSM-based estimates of the proxies. (left to right columns) Different reconstructed variables. The skill
metrics are (top row) correlation (r), (middle row) coefficient of efficiency (CE), and (bottom row) continuous ranked probability skill score (CRPSS); both CE and
CRPSS are only shown down to −1. The skill metrics are computed after detrending the underlying true and reconstruction data. For the correlation plots,
stippling indicates correlations with p values greater than 0.05. The locations of the temperature pseudoproxies are indicated by the open squares.

the pseudoproxy results (local skill as well as a band of skill in the tropics), though the skill is generally quite
low. Precipitation as shown in the third column of Figure 13 appears to not be robustly reconstructed any-
where. The key results from these real reconstructions are that they show local skill to be most robust together
with the possibilities of nonlocal reconstruction skill in the tropics (in agreement with the pseudoproxy exper-
iments shown in section 2). It is not surprising to find reduced skill in the real proxy reconstructions relative to
the pseudoproxy reconstructions (cf. Figures 13 and 5–7), and additional steps could be taken in an attempt
to improve the real reconstructions, such as bias correcting the GCM output variables, optimizing the PSM
parameters, increasing the size of the prior ensembles, and increasing the resolution of the GCM simulations,
though these are all beyond the scope of this study.

Additionally, we performed experiments employing a “linear statistical PSM” as a point of reference for the
reconstructions already shown in Figures 12 and 13. This linear statistical PSM is a simple linear fit of the δ18O
to local temperature, as used in a recent paleoclimate reanalysis [Hakim et al., 2016]. Fitting ice core data
to local temperature as part of a reconstruction has been standard practice for several decades [Dansgaard,
1964; Jouzel et al., 1997]; thus, linear statistical modeling of ice core isotopes is important from a historical
perspective in addition to its practical advantages of being much less labor intensive to implement. The spe-
cific method used to produce these linear statistical real proxy reconstructions is discussed in section A3. The
results of these reconstructions are shown in Figures 14 and 15. Focusing on a comparison between the time
series reconstructions of both types of reconstructions, Figures 12 and 14, we see that both are of compa-
rable quality, with better skill metric values (r, CE, and CRPSS) for the linear statistical approach, while the
physics-based PSM reconstructions tend to have better or comparable coherence (e.g., comparing Greenland
mean temperature coherence in Figures 12b and 14b). The spatial skill maps also show similar local skill. These
results are in agreement with the pseudoproxy-only reconstruction results of Dee et al. [2016], who found
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Figure 14. Greenland, British Isles, and global mean temperature real proxy reconstructions using the linear statistical
PSM. (a, c, and e) The reconstructions in blue with ±2𝜎 error estimates and (b, d, and f ) the coherence of the mean
reconstruction (dark blue line) with the observational data set Berkeley Earth (BEarth; black line).

comparable skill between a linear statistical approach and a similar physics-based approach to that used here
of isotope-enabled climate simulations in conjunction with ice core diffusion modeling. In making the com-
parisons between Figures 12 and 13 and Figures 14 and 15 it is critical to keep in mind that the physics-based
PSMs used here have not been optimized or had their inputs bias corrected, while a linear optimization and
bias correction are naturally part of the linear statistical approach. Therefore, the comparison between recon-
struction techniques shown here likely underestimates the skill of the physics-based PSMs, which have the
potential to capture more complex climatic and nonclimatic dependencies than linear statistical methods;
as PSMs are refined and improved, it will be important to continually evaluate the relative performance of
different methods for establishing climate-proxy relationships.
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Figure 15. Spatial reconstruction skill using the linear statistical PSM and real proxies.

4. Conclusions

Through a series of pseudo and real ice core isotope reconstructions we have estimated the spatial and tem-
poral extent of how ice core isotopes can inform on past climate. Confirming much previous evidence [e.g.,
Jouzel et al., 1997], we find that ice cores can most robustly reconstruct local temperature and measures of
atmospheric circulation (geopotential height). Furthermore, the pseudoproxy experiments suggest that ice
cores can in principle be used to reconstruct nonlocal variables, particularly in the tropics. Though this non-
local skill is spatially variable and even if ice core locations have a known seasonal link to other regions,
this does not guarantee skillful ice core isotope-based reconstructions of these other linked regions: as a
test case, all sets of experiments show that information in Greenland ice core isotopes (in addition to other
global ice cores) is uninformative for climate reconstructions over the British Isles and Europe; while both
Greenland and Europe lie within the influence of modes of variability such as the NAO, it appears unlikely
that Greenland ice cores can robustly inform European temperatures or atmospheric circulation at annual and
decadal time scales.

We also found fundamental differences in skill between the reconstruction variables of surface temperature,
geopotential height at 500 hPa, and precipitation, with precipitation skill being clearly less robust. These dif-
ferences are determined by the covariance relationships between the prior estimate of the proxies and the
reconstructed variables (as used by the data assimilation method): the covariance length scale for precipita-
tion is simply too short for that variable to be reconstructed by ice core isotopes over most of the globe on
annual timescales.

The real ice core proxy reconstructions presented in the second half of this paper represent the first ice
core-based reconstructions to include PSMs together with data assimilation in the reconstruction process.
These reconstructions compare most favorably with the idealized pseudoproxy experiments and a linear
statistical real proxy reconstruction technique at the 5–10 year timescale. While this is only a first foray
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into a novel approach, we suggest that with future refinements, this reconstruction approach could provide
improved ice core-based reconstructions.

Appendix A: Additional Experiments and Figures
A1. Climate Model Evaluation
Figures A1–A4 provide a general evaluation of the ECHAM5-wiso and iCAM5 simulations against observa-
tions. Figure A1 compares the annual mean δ18O of precipitation in a global observational data set, the global
network of isotopes in precipitation (GNIP), with the simulated δ18O of precipitation. From this figure, we see
that for both models the simulated water isotope ratios are in broad agreement with the observations in
both their spatial patterns and magnitudes. An additional first-order test of the simulations is the modeled
relationship between the mean δ18O of precipitation and mean temperature at ice core locations; as shown
in Jouzel et al. [1997], for example, this relationship is known from observations to be approximately linear.
Figure A2 shows that for both model simulations, this indeed holds. The remaining key component of the
ice cores is the accumulation rates of precipitation at site locations. Figure A3 shows the mean accumula-
tion of the model simulations together with the ERA-Interim reanalysis product, where data were taken from
the nearest grid cells to the ice core locations. We note that both models correctly identify low-, moderate-,
and high-accumulation sites, with the absolute value of the relative errors for most locations less than 1
(where relative error is defined as 𝛿x = x0∕xt − 1, with x0 as the modeled value and xt as the observed value
according to ERA-Interim). However, in Figure A3b we see that there is a general tendency to have too much

Figure A1. Global network of isotopes in precipitation (GNIP) and modeled δ18O of precipitation in the two models employed in this study. The isotope values
are the time mean over the available observations and the model simulation years of 1871–2011.
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Figure A2. The relationship between annual mean δ18O of precipitation and annual mean temperature at all ice core
locations for both climate models.

accumulation at ice core sites. Figure A4 shows the spatial distribution of these relative errors. Neither of the
models show spatially coherent patterns of bias, with the exception of ECHAM5-wiso generally simulating too
much accumulation across East Antarctica.

A2. Diffusion Experiments
As mentioned in the text, the amount of diffusion within the firn has the potential to impact the isotopic signal
within our modeled ice cores. Thus, we also performed two end-member diffusion experiments and compare
these with the control or normal diffusion experiments. Figures A5–A7 summarize the spatial reconstruction
skill for 2 m temperature, Z500, and precipitation for a control, 1/2×𝜎 and 2×𝜎 diffusion experiments, also for
both GCMs. In these figures we can see that the largest differences are between the GCMs, with relatively small

Figure A3. (top) Modeled mean annual accumulation of total precipitation at all ice core locations for the two models
used in this study compared against the ERA-Interim reanalaysis. (bottom) Relative error for ECHAM5-wiso and iCAM5
simulations, calculated against ERA-Interim.
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Figure A4. The relative error of GCM-modeled total precipitation accumulation at the pseudoproxy locations (same
information as in Figure A3 but shown spatially). Reds indicate too much accumulation, while blues indicate too little
accumulation relative to ERA-Interim.

changes in the distributions for different diffusion parameters; decreasing or reducing the normal diffusion
by a factor of 2 does not change the nature of the reconstruction skill over these 141 year reconstructions.

A3. Linear Statistical Reconstruction Method
Additional real proxy experiments were performed using a simple linear statistical model, as in Hakim et al.
[2016], rather than a physically based PSM. This statistical model is derived from a linear regression between
a given annual proxy time series, pi, and a given local instrumental annual mean temperature series, Ti , as

pi = 𝛼i + 𝛽iTi + 𝜖i , (A1)
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Figure A5. Box plot summaries of the distribution of spatial temperature pseudoproxy reconstruction skill as a function
of GCM and ice core diffusion. The skill of six reconstructions, by model and diffusion type, is shown for the metrics
correlation (r), coefficient of efficiency (CE), and continuous ranked probability skill score (CRPSS). The three ice core
diffusion types are half (0.5 x), normal (norm), and double (2 x). The box plot whiskers extend to ±1.5 the interquartile
range and outliers have been omitted for clarity.

Figure A6. Box plot summaries of spatial Z500 pseudoproxy reconstruction skill as a function of GCM and ice core
diffusion, as in Figure A5.
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Figure A7. Box plot summaries of spatial precipitation pseudoproxy reconstruction skill as a function of GCM and ice
core diffusion, as in Figure A5.

which is calculated over a period of temporal overlap between the two. The prior estimate of the proxies,
H(xb) ≡ ye, is then found for each proxy by using the calibrated parameters 𝛼i and 𝛽i in

yei = 𝛼i + 𝛽ii , (A2)

where i are the grid point temperature values nearest to the proxy location in each prior ensemble member.
The residuals for each proxy, 𝜖i , are then used as the mean squared error in the DA update equations via
𝜖2

i = Ri . Note that this statistical model only considers local temperature and relies solely on the DA covariance
relationships to inform nonlocal climate variables, rather than embedding some of that nonlocal information
within the PSM as done in the other ice core-based reconstructions presented here.

As part of the Monte Carlo reconstruction process, we performed a total of 400 reconstructions over the period
1900–2000. For temperature calibration data sets, we used HadCRUT4.3 [Morice et al., 2012] and Berkeley
Earth [Rohde et al., 2013]. Four sets of 100 reconstructions were performed with a unique model calibration
data pair, randomly sampling 75% of the proxy network for each iteration, as with the other experiments.
We also used the same GCM simulations from ECHAM5-wiso and iCAM5 to construct the priors. The same 38
real δ18O measurements were used here (Figure 1). Because the proxy data are composed of only ice cores,
we did not standardize the raw isotopic measurements at any point in the reconstructions. The calibrations
were computed over the period 1880–2014, though individual locations had various proportions of missing
data for either the proxy and/or the temperature calibration data (particularly, there is very little temperature
data over Antarctica prior to the late 1950s). For the reconstructions, we drew a random prior of 140 annual
states from each climate model simulation (the prior size was limited to 140 by the extent of the historical
simulations). We also tested the seasonality of the prior averaging and the proxy temperature statistical PSMs
by alternatively defining a year as April to the next March; we found very similar results (not shown) and
therefore retained the usual annual definition of January to December in all the results shown here, which is
consistent with all the other reconstructions.
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